Abstract
In the tumor microenvironment (TME), one of the major functions of tumor-recruited CD11b+ cells are the suppression of the T-cell-mediated anti-tumor immune response. β-glucan could convert the phenotype of tumor-recruited CD11b+ cells from the suppressive to the promotive, and enhanced their anti-tumor effects. However, β-glucan could enhance the PD-1/PD-L1 expression on CD11b+ cells, while PD-1 could inhibit macrophage phagocytosis and PD-L1 could induce a co-inhibitory signal in T-cells and lead to T-cell apoptosis and anergy. These protumor effects may be reversed by PD-1/PD-L1 block therapy. In the present study, we focused on the efficacy of β-glucan anti-tumor therapy combined with anti-PD-L1 mAb treatment, and the mechanism of their synergistic effects could be fully verified. We verified the effect of β-glucan (i.e., inflammatory cytokine secretion of TNF-α, IL-12, IL-6, IL-1β and the expression of immune checkpoint PD-1/PD-L1) in naïve mouse peritoneal exudate CD11b+ cells. In our mouse melanoma model, treatment with a PD-L1 blocking antibody with β-glucan synergized tumor regression. After treatment with β-glucan and anti-PD-L1 mAb antibody, tumor infiltrating leukocyte (TILs) not only showed a competent T-cell function (CD107a, perforin, IL-2, IFN-γ and Ki67) and CTL population, but also showed enhanced tumor-recruited CD11b+ cell activity (IL-12, IL-6, IL-1β and PD-1). This effect was also verified in the peritoneal exudate CD11b+ cells of tumor-bearing mice. PD-1/PD-L1 blockade therapy enhanced the β-glucan antitumor effects via the blockade of tumor-recruited CD11b+ cell immune checkpoints in the melanoma model.
Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Abbreviations
AP-BG:
Aureobasidium pullulans-Produced β-glucanCTLs:
Cytotoxic T-cellsMDSC:
Myeloid-derived suppressor cellsMFI:
Mean fluorescence intensityPECs:
Peritoneal exudate cellsPMA:
Phorbol 12-myristate 13-acetateTADC:
Tumor-associated DCsTAM:
Tumor-associated macrophagesTGI:
Tumor growth inhibitionTIL:
Tumor-infiltrating leukocytesTIM:
Tumor-infiltrating myeloid cellsTME:
Tumor microenvironment
References
- Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029. https://doi.org/10.1172/JCI45862Article CAS PubMed PubMed Central Google Scholar
- Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM (2016) The Tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–388. https://doi.org/10.1016/j.immuni.2016.08.009Article CAS PubMed PubMed Central Google Scholar
- Park JA, Wang L, Cheung NV (2001) Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. J Hematol Oncol 14(1):142. https://doi.org/10.1186/s13045-021-01156-5Article CAS Google Scholar
- Uehara T, Eikawa S, Nishida M, Kunisada Y, Yoshida A, Fujiwara T, Kunisada T, Ozaki T, Udono H (2019) Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 31(4):187–198. https://doi.org/10.1093/intimm/dxy079Article CAS PubMed Google Scholar
- Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S et al (2020) Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183(3):771-785 e12. https://doi.org/10.1016/j.cell.2020.09.058Article CAS PubMed PubMed Central Google Scholar
- Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML et al (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7):1461–1471. https://doi.org/10.1182/blood-2009-08-237412Article CAS PubMed PubMed Central Google Scholar
- Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25. https://doi.org/10.1186/1756-8722-2-25Article CAS PubMed PubMed Central Google Scholar
- Vetvicka V, Vannucci L, Sima P, Richter J (2019) Beta Glucan: Supplement or Drug? From laboratory to clinical trials. Molecules 24(7):1251. https://doi.org/10.3390/molecules24071251Article CAS PubMed PubMed Central Google Scholar
- Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG (2020) Beta-glucan metabolic and immunomodulatory properties and potential for clinical application. J Fungi (Basel) 6(4):356. https://doi.org/10.3390/jof6040356Article CAS PubMed Google Scholar
- Daley D, Mani VR, Mohan N, Akkad N, Ochi A, Heindel DW, Lee KB, Zambirinis CP, Pandian GSB, Savadkar S et al (2017) Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 23(5):556–567. https://doi.org/10.1038/nm.4314Article CAS PubMed PubMed Central Google Scholar
- Moriya N, Moriya Y, Nomura H, Kusano K, Asada Y, Uchiyama H, Park EY, Okabe M (2014) Improved β-glucan yield using an Aureobasidium pullulans M-2 mutant strain in a 200-L pilot scale fermentor targeting industrial mass production. Biotechnol Bioprocess Eng 18(6):1083–1089Article Google Scholar
- Muramatsu D, Iwai A, Aoki S, Uchiyama H, Kawata K, Nakayama Y, Nikawa Y, Kusano K, Okabe M, Miyazaki T (2012) beta-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS ONE 7(7):e41399. https://doi.org/10.1371/journal.pone.0041399Article CAS PubMed PubMed Central Google Scholar
- Shui Y, Hu X, Hirano H, Kusano K, Tsukamoto H, Li M, Hasumi K, Guo WZ, Li XK (2021) Beta-glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int Immunopharmacol 101(Pt A):108265. https://doi.org/10.1016/j.intimp.2021.108265Article CAS PubMed Google Scholar
- Geller A, Shrestha R, Yan J (2019) Yeast-derived beta-glucan in cancer: novel uses of a traditional therapeutic. Int J Mol Sci 20(15):3618. https://doi.org/10.3390/ijms20153618Article CAS PubMed PubMed Central Google Scholar
- Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214(4):895–904. https://doi.org/10.1084/jem.20160801Article CAS PubMed PubMed Central Google Scholar
- Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. https://doi.org/10.1084/jem.20100643Article CAS PubMed PubMed Central Google Scholar
- Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, Guo J, Peng H, Chen M, Fu YX et al (2020) PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun 11(1):4835. https://doi.org/10.1038/s41467-020-18570-xArticle CAS PubMed PubMed Central Google Scholar
- Shan T, Chen S, Chen X, Wu T, Yang Y, Li S, Ma J, Zhao J, Lin W, Li W et al (2020) M2TAM subsets altered by lactic acid promote Tcell apoptosis through the PDL1/PD1 pathway. Oncol Rep 44(5):1885–1894. https://doi.org/10.3892/or.2020.7767Article CAS PubMed PubMed Central Google Scholar
- Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499. https://doi.org/10.1038/nature22396Article CAS PubMed PubMed Central Google Scholar
- Wei Y, Zhao Q, Gao Z, Lao XM, Lin WM, Chen DP, Mu M, Huang CX, Liu ZY, Li B et al (2019) The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J Clin Invest 129(8):3347–3360. https://doi.org/10.1172/JCI127726Article PubMed PubMed Central Google Scholar
- Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS ONE 8(2):e57114. https://doi.org/10.1371/journal.pone.0057114Article CAS PubMed PubMed Central Google Scholar
- Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M (2020) PD-L1-mediated immunosuppression in glioblastoma is Associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol 11:588552. https://doi.org/10.3389/fimmu.2020.588552Article CAS PubMed PubMed Central Google Scholar
- Tsukihara H, Nakagawa F, Sakamoto K, Ishida K, Tanaka N, Okabe H, Uchida J, Matsuo K, Takechi T (2015) Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol Rep 33(5):2135–2142. https://doi.org/10.3892/or.2015.3876Article CAS PubMed PubMed Central Google Scholar
- Z-j JIN (2004) About the evaluationof drug combination. Acta Pharmacol Sin 25(2):146–147Google Scholar
- Wang K, Liu X, Liu Q, Ho IH, Wei X, Yin T, Zhan Y, Zhang W, Zhang W, Chen B et al (2020) Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death Dis 11(8):611. https://doi.org/10.1038/s41419-020-02880-5Article CAS PubMed PubMed Central Google Scholar
- Shen N, Yang C, Zhang X, Tang Z, Chen X (2021) Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomater 135:543–555. https://doi.org/10.1016/j.actbio.2021.08.013Article CAS PubMed Google Scholar
- Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4(4):303–306. https://doi.org/10.4103/0976-500X.119726Article PubMed PubMed Central Google Scholar
- Kang H (2021) Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof 18:17. https://doi.org/10.3352/jeehp.2021.18.17Article PubMed PubMed Central Google Scholar
- Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social. Behav Biomed Sci 39(2):175–191Google Scholar
- Vetvicka V, Thornton BP, Ross GD (1996) Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest 98(1):50–61. https://doi.org/10.1172/JCI118777Article CAS PubMed PubMed Central Google Scholar
- Chitirala P, Chang HF, Martzloff P, Harenberg C, Ravichandran K, Abdulreda MH, Berggren PO, Krause E, Schirra C, Leinders-Zufall T, Benseler F, Brose N, Rettig J (2020) Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. Elife 9:e58065. https://doi.org/10.7554/eLife.58065Article CAS PubMed PubMed Central Google Scholar
- Packard BZ, Telford WG, Komoriya A, Henkart PA (2007) Granzyme B activity in target cells detects attack by cytotoxic lymphocytes. J Immunol 179(6):3812–3820. https://doi.org/10.4049/jimmunol.179.6.3812Article CAS PubMed Google Scholar
- Wattrang E, Dalgaard TS, Norup LR, Kjaerup RB, Lunden A, Juul-Madsen HR (2015) CD107a as a marker of activation in chicken cytotoxic T cells. J Immunol Methods 419:35–47. https://doi.org/10.1016/j.jim.2015.02.011Article CAS PubMed Google Scholar
- Anikeeva N, Panteleev S, Mazzanti NW, Terai M, Sato T, Sykulev Y (2021) Efficient killing of tumor cells by CAR-T cells requires greater number of engaged CARs than TCRs. J Biol Chem 297(3):101033. https://doi.org/10.1016/j.jbc.2021.101033Article CAS PubMed PubMed Central Google Scholar
- Frank B, Wei Y-L, Kim K-H, Guerrero A, Lebrec H, Balazs M, Wang X (2018) Development of a BiTE®-mediated CD8+ cytotoxic T-lymphocyte activity assay to assess immunomodulatory potential of drug candidates in Cynomolgus macaque. J Immunotoxicol 15(1):119–125. https://doi.org/10.1080/1547691X.2018.1486342Article CAS PubMed Google Scholar
- Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139. https://doi.org/10.4049/jimmunol.180.5.3132Article CAS PubMed Google Scholar
- Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. Oncoimmunology 5(6):e1163462. https://doi.org/10.1080/2162402X.2016.1163462Article CAS PubMed PubMed Central Google Scholar
- Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R, Du VY, Kaftan E, Goldberg S, Dong W et al (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 9(1):3196. https://doi.org/10.1038/s41467-018-05032-8Article CAS PubMed PubMed Central Google Scholar
- Soares A, Govender L, Hughes J, Mavakla W, de Kock M, Barnard C, Pienaar B, Janse van Rensburg E, Jacobs G, Khomba G et al (2010) Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods 362(1–2):43–50. https://doi.org/10.1016/j.jim.2010.08.007Article CAS PubMed PubMed Central Google Scholar
- Matsushita H, Hosoi A, Ueha S, Abe J, Fujieda N, Tomura M, Maekawa R, Matsushima K, Ohara O, Kakimi K (2015) Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNgamma-dependent cell-cycle arrest. Cancer Immunol Res 3(1):26–36. https://doi.org/10.1158/2326-6066.CIR-14-0098Article CAS PubMed Google Scholar
- Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H (2015) Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A 112(6):1809–1814. https://doi.org/10.1073/pnas.1417636112Article CAS PubMed PubMed Central Google Scholar
- Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K (2018) Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front Immunol 9:1977. https://doi.org/10.3389/fimmu.2018.01977Article CAS PubMed PubMed Central Google Scholar
- Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen HJ, Boshuizen MC, Ahmed M et al (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17(3):684–696. https://doi.org/10.1038/nnano.2016.168Article CAS PubMed Google Scholar
- Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994Article CAS PubMed PubMed Central Google Scholar
- Kim J, Bae JS (2016) Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm 2016:6058147. https://doi.org/10.1155/2016/6058147Article CAS PubMed PubMed Central Google Scholar
- Di Mitri D, Toso A, Alimonti A (2015) Tumor-infiltrating myeloid cells drive senescence evasion and chemoresistance in tumors. Oncoimmunology 4(9):e988473. https://doi.org/10.4161/2162402X.2014.988473Article CAS PubMed PubMed Central Google Scholar
- Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD (2016) Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine 6:50–58Article PubMed PubMed Central Google Scholar
- Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73(9):2782–2794. https://doi.org/10.1158/0008-5472.CAN-12-3981Article CAS PubMed PubMed Central Google Scholar
- Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM (2010) Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A 107(18):8363–8368Article CAS PubMed PubMed Central Google Scholar
- Cao Q, Huang Q, Wang YA, Li C (2021) Abraxane-induced bone marrow CD11b(+) myeloid cell depletion in tumor-bearing mice is visualized by muPET-CT with (64)Cu-labeled anti-CD11b and prevented by anti-CSF-1. Theranostics 11(7):3527–3539Article CAS PubMed PubMed Central Google Scholar
- de Graaff P, Govers C, Wichers HJ, Debets R (2018) Consumption of beta-glucans to spice up T cell treatment of tumors: a review. Expert Opin Biol Ther 18(10):1023–1040. https://doi.org/10.1080/14712598.2018.1523392Article CAS PubMed Google Scholar
- Kawata K, Iwai A, Muramatsu D, Aoki S, Uchiyama H, Okabe M, Hayakawa S, Takaoka A, Miyazaki T (2015) Stimulation of macrophages with the beta-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL). PLoS ONE 10(4):e0124809. https://doi.org/10.1371/journal.pone.0124809Article CAS PubMed PubMed Central Google Scholar
- Suzuki T, Kusano K, Kondo N, Nishikawa K, Kuge T, Ohno N (2021) Biological activity of high-purity β-1,3–1,6-Glucan derived from the black yeast aureobasidium pullulans: a literature review. Nutrients. https://doi.org/10.3390/nu13010242Article PubMed PubMed Central Google Scholar
- Driscoll M, Hansen R, Ding C, Cramer DE, Yan J (2009) Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol Ther 8(3):218–225. https://doi.org/10.4161/cbt.8.3.7337Article CAS PubMed Google Scholar
- Kornete M, Sgouroudis E, Piccirillo CA (2012) ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. J Immunol 188(3):1064–1074. https://doi.org/10.4049/jimmunol.1101303Article CAS PubMed Google Scholar
- Chen D, Liu X, Yang Y, Yang H, Lu P (2015) Systematic synergy modeling: understanding drug synergy from a systems biology perspective. BMC Syst Biol 9:56. https://doi.org/10.1186/s12918-015-0202-yArticle CAS PubMed PubMed Central Google Scholar
- Duarte D, Vale N (2022) Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov 3:100110. https://doi.org/10.1016/j.crphar.2022.100110Article PubMed PubMed Central Google Scholar
- Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947Article CAS PubMed Google Scholar
- Lederer S, Dijkstra TMH, Heskes T (2018) Additive dose response models: explicit formulation and the loewe additivity consistency condition. Front Pharmacol 9:31. https://doi.org/10.3389/fphar.2018.00031Article CAS PubMed PubMed Central Google Scholar
- Liu Q, Yin X, Languino LR, Altieri DC (2018) Evaluation of drug combination effect using a Bliss independence dose-response surface model. Stat Biopharm Res 10(2):112–122. https://doi.org/10.1080/19466315.2018.1437071Article PubMed PubMed Central Google Scholar
- Grosskopf AK, Correa S, Baillet J, Maikawa CL, Gale EC, Brown RA, Appel EA (2021) Consistent tumorigenesis with self-assembled hydrogels enables high-powered murine cancer studies. Commun Biol 4(1):985. https://doi.org/10.1038/s42003-021-02500-8Article CAS PubMed PubMed Central Google Scholar
- Fridman R, Benton G, Aranoutova I, Kleinman HK, Bonfil RD (2012) Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc 7(6):1138–1144. https://doi.org/10.1038/nprot.2012.053Article CAS PubMed Google Scholar
- Fowlkes N, Clemons K, Rider PJ, Subramanian R, Wakamatsu N, Langohr I, Kousoulas KG (2019) Factors affecting growth kinetics and spontaneous metastasis in the B16F10 syngeneic murine melanoma model. Comp Med 69(1):48–54Article CAS PubMed PubMed Central Google Scholar
- Chen S, Lee LF, Fisher TS, Jessen B, Elliott M, Evering W, Logronio K, Tu GH, Tsaparikos K, Li X et al (2015) Combination of 4–1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 3(2):149–160. https://doi.org/10.1158/2326-6066.CIR-14-0118Article CAS PubMed Google Scholar
- Grinshtein N, Ventresca M, Margl R, Bernard D, Yang TC, Millar JB, Hummel J, Beermann F, Wan Y, Bramson JL (2009) High-dose chemotherapy augments the efficacy of recombinant adenovirus vaccines and improves the therapeutic outcome. Cancer Gene Ther 16(4):338–350. https://doi.org/10.1038/cgt.2008.89Article CAS PubMed Google Scholar
- Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, Sheen MR, Fox BA, Bzik DJ, Bosenberg M et al (2013) Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol 190(1):469–478. https://doi.org/10.4049/jimmunol.1201209Article CAS PubMed Google Scholar
- Reilley MJ, Morrow B, Ager CR, Liu A, Hong DS, Curran MA (2019) TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J Immunother Cancer 7(1):323. https://doi.org/10.1186/s40425-019-0811-xArticle PubMed PubMed Central Google Scholar
- Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, Boss JM (2015) NF-kappaB regulates PD-1 expression in macrophages. J Immunol 194(9):4545–4554. https://doi.org/10.4049/jimmunol.1402550Article CAS PubMed Google Scholar
- Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695. https://doi.org/10.1172/JCI67313Article CAS PubMed PubMed Central Google Scholar
- Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800. https://doi.org/10.1038/nm730Article CAS PubMed Google Scholar
References