Abstract

β-(1→3)-D-glucans with β-(1→6)-glycosidic linked branches are known to be immune activation agents and are incorporated in anti-cancer drugs and health-promoting supplements. β-Glucan concentration was 9.2 g/L in a 200-L pilot scale fermentor using mutant strain Aureobasidium pullulans M-2 from an imperfect fungal strain belonging to A. pullulans M-1. The culture broth of A. pullulans M-2 had a faint yellow color, whereas that of the wild-type had an intense dark green color caused by the accumulation of melanin-like pigments. β-Glucan produced by A. pullulans M-2 was identified as a polysaccharide of D-glucose monomers linked by β-(1→3, 1→6)-glycosidic bonds through GC/MS and NMR analysis. When a conventional medium was used in the culture of A. pullulans M-2 in a 3-L jar fermentor, β-glucan concentration was 1.4-fold that produced by the wild-type. However, when a medium optimized by statistical experimental design was used with dissolved oxygen at 10%, the β-glucan concentration was 9.9 g/L with a yield of 0.52 (g β-glucan/g consumed sucrose), 2.9-fold that of the wild-type. This level of productivity was reproduced when the fermentation was scaled up 200-L. The industrial production of high β-glucan without melanin-like pigments is highly expected, as a health-promoting supplement or functional food.

Article PDF

https://link.springer.com/content/pdf/10.1007/s12257-013-0516-9.pdf

Similar content being viewed by others

Improved production of β-glucan by a T-DNA–based mutant of Aureobasidium pullulans

Article 27 August 2021

Enhanced β-glucan and pullulan production by Aureobasidium pullulans with zinc sulfate supplementation

Article 23 December 2019

Botryosphaeran – A Fungal Exopolysaccharide of the (1→3)(1→6)-β-D-Glucan Kind: Structure and Biological Functions

Chapter © 2019

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Takimoto, H., D. Wakita, K. Kawaguchi, and Y. Kumazawa (2004) Potentiation of cytotoxic activity in naïve and tumor-bearing mice by oral administration of hot-water extracts from Agaricus brazei fruiting bodies. Biol. Pharm. Bull. 27: 404–406.Article CAS Google Scholar 
  2. Zhang, J., G. Wang, H. Li, C. Zhuang, T. Mizuno, H. Ito, C. Suzuki, H. Okamoto, and J. Li (1994) Antitumor polysaccharides from a Chinese mushroom, “Yuhuangmo,” the fruiting body of Pleurotus citrinopileatusBiosci. Biotechnol. Biochem. 58: 1195–1201.Article CAS Google Scholar 
  3. Delaney, B., R. J. Nicolosi, T. A. Wilson, T. Carlson, S. Frazer, G. -H. Zheng, R. Hess, K. Ostergren, J. Haworth, and N. Knutson (2003) Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J. Nutr. 133: 468–475.Google Scholar 
  4. Izydorczyk, M. S. and J. E. Dexter (2008) Barley glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products. Food Res. Int’l. 41: 850–868.Article CAS Google Scholar 
  5. Salar, R. K., M. Certik, and V. Brezova (2012) Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Thamnidium elegans CCF 1456. Biotechnol. Bioproc. Eng. 17: 109–116.Article CAS Google Scholar 
  6. Kwiatkowski, S., U. Thielen, P. Glenney, and C. Moran (2009) A Study of Saccharomyces cerevisiae cell wall glucans. J. Inst. Brew. 115: 151–158.Article CAS Google Scholar 
  7. Goodrige, H. S., C. N. Reyes, C. A. Becker, T. R. Katsumoto, J. Ma, A. J. Wolf, N. Bose, A. S. H. Chan, A. S. Magee, M. E. Danielson, A. Weiss, J. P. Vasilakos, and D. M. Underhill (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472: 471–475.Article Google Scholar 
  8. Brown, G. D. and S. Gordon (2003) Fungal β-glucans and mammalian immunity. Immunity 19: 311–315.Article CAS Google Scholar 
  9. Lull, C., H. J. Wichers, and H. F. J. Savelkoul (2005) Antiinflammatory and immunomodulating properties of fungal metabolites. Mediat. Inflamm. 2: 63–80.Article Google Scholar 
  10. Thompson, I. J., P. C. F. Oyston, and D. E. Williamson (2010) Potential of the β-glucans to enhance innate resistance to biological agents. Expert Rev. Anti. Infect. Ther. 8: 339–352.Article CAS Google Scholar 
  11. Hong, F., J. Yan, J. T. Baran, D. J. Allendorf, R. D. Hansen, G. R. Ostroff, P. X. Xing, N. -K. V. Cheung, and G. D. Ross (2006) Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173: 797–806.Google Scholar 
  12. Li, B., D. J. Allendorf, R. Hansen, J. Marroquin, D. E. Cramer, C. L. Harris, and J. Yan (2007) Combined yeast β-glucan and antitumor monoclonal antibody therapy requires C5a-mediated neutrophil chemotaxis via regulation of decay-accelerating factor CD55. Cancer Res. 67: 7421–7430.Article CAS Google Scholar 
  13. Yatawara, L., S. Wickramasinghe, M. Nagataki, M. Takamoto, H. Nomura, Y. Ikeue, Y. Watanabe, and T. Agatsuma (2009) Aureobasidium-derived soluble branched (1,3–1,6) β-glucan (Sophy β-glucan) enhances natural killer activity in Leishmania amazonensis-infected mice. Kor. J. Parasitol. 47: 345–351.Article CAS Google Scholar 
  14. Muramatsu, D., A. Iwai, S. Aoki, H. Uchiyama, K. Kawata, Y. Nakayama, Y. Nikawa, K. Kusano, M. Okabe, and T. Miyazaki (2012) β-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS ONE 7: e41399.Article CAS Google Scholar 
  15. Miyawaki, K., K. Terao, S. Yamakita, S. Takahashi, Y. Ikeue, N. Fujii, T. Onaka, H. Muramatsu, and S. Nagata (2010) Relationship between the functional β-glucan polysaccharide-production and the cell morphologies of Aureobasidium pullulansSeibutsukogaku 88: 634–641.CAS Google Scholar 
  16. Hamada, N., K. Deguchi, T. Ohmoto, K. Sakai, T. Ohe, and H. Yoshizumi (2000) Ascorbic acid stimulation of production of a highly branched β-glucan by Aureobasidium pullulans K-1-oxalic acid, a metabolite of ascorbic acid as the stimulating substance. Biosci. Biotechnol. Biochem. 64: 1801–1806.Article CAS Google Scholar 
  17. Wei, N. -W. V., C. C. Wallace, C. -F. Dai, K. R. M. Pillay, and C. A. (2006) Chen Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the Scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zool. Stud. 45: 404–418.CAS Google Scholar 
  18. Virtudazo, E. V., H. Nakamura, and M. Kakishima (2001) Phylogenic analysis of sugarcane rusts based on sequence of ITS, 5.8 S rRNA and D1/D2 regions of LSU rRNA. J. Gen. Plant Pathol. 67: 28–36.Article CAS Google Scholar 
  19. Anumula, K. R. and P. B. Taylor (1992) A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203: 101–108.Article CAS Google Scholar 
  20. Schmid, F., B. A. Stone, B. M. McDougall, A. Bacic, K. L. Martin, R. T. C. Brownlee, E. Chai, and R. J. Seviour (2001) Structure of epiglucan a highly side-chain/branched (1→3;1→6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex. Schlecht. Carbohydr. Res. 331: 163–171.Article CAS Google Scholar 
  21. Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables. Technometric 2: 455–475.Article Google Scholar 
  22. Lopez, J. C., J. S. Perez, J. M. F. Sevilla, F. G. A. Fernandez, E. M. Grima, and Y. Chisti (2004) Fermentation optimization for the production of lovastatin by Aspergillus terreus: Use of response surface methodology. J. Chem. Technol. Biotechnol. 79: 1196–1126.Google Scholar 
  23. EI-Refai, H. A., E. R. EI-Helow, M. A. Amin, L. A. Sallam, and H. -A. A. Salem (2010) Application of multi-factorial experimental designs for optimization of biotin production by a Rhizopus nigricans strain. J. Am. Sci. 6: 179–187.Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Tokyo Head Office, Aureo Co. Ltd., Tokyo, 108-0071, JapanNaoyuki Moriya, Yukiko Moriya, Kisato Kusano & Yukoh Asada
  2. Kazusa Factory, Aureo Co. Ltd., Kimitsu-shi, 292-1149, JapanHideo Nomura, Yukoh Asada, Hirofumi Uchiyama & Mitsuyasu Okabe
  3. Laboratory of Biotechnology, Graduate School of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, JapanHirofumi Uchiyama & Enoch Y. Park

References

https://doi.org/10.1007/s12257-013-0516-9